Since x and y are the sides of the two squares such that y=x−x2
∴ area of the first square (A1)=x2
And area of the second square (A2)=y2=(x−x2)2
∴dA2dt=ddt(x−x2)2=2(x−x2)(dxdt−2x.dxdt)
=dxdt(1−2x)2(x−x2)
and dA1dt=ddtx2=2xdxdt
∴dA2dA1=dA2/dtdA1/dt=dxdt(1−2x)(2x−2x2)2xdxdt
=(1−2x)2x(1−x)2x
=(1−2x)(1−x)
=1−x−2x+2x2
=2x2−3x+1