wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

x=sin3tcos2t,y=cos3tcos2t then find dydx

Open in App
Solution

x=sin3tcos2t,y=cos3tcos2t
dxdt=ddx[sin3tcos2t]
=ddx(sin3t)1cos2t+ddx(1cos2t)sin3t (by chain rule)
=3sin2tcostcos2t+sin3t(12)(cos2t)3/2×(2sin2t)
dxdt=3sin2tcostcos2t+sin2tsin2t(cos2t)3/2
dydt=ddt(cos3tcos2t)
=ddx(cos3t)1cos2t+ddx(1cos2t)cos3t
=3cos2t(sint)cos2t+(12)(cos2t)3/2×(2sin2t)cos3t
=3cos2tsintcos2t+cos3tsin2t(cos2t)3/2
dydx=dy/dtdx/dt
=3cos2tsintcos2t+cos3tsin2t(cos2t)3/23sin2tcostcos2t+sin3tsin2t(cos2t)3/2
=3cos2tsintcos2t+cos3tsin2t3sin2tcostcos2t+sin3tsin2t
=3cos2tsint(cos2t)+2cos4tsint3sin2tcostcos2t+2sin4tcost
=2cos3t3costcos2t2sin3t+3sintcos2t
=2cos3t3(cost)(2cos2t1)2sin3t+3sint(12sin2t)=cos(t)[34cos2t34sin2t]

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Parametric Differentiation
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon