x=sin3t√cos2t,y=cos3t√cos2t
dxdt=ddx[sin3t√cos2t]
=ddx(sin3t)1√cos2t+ddx(1√cos2t)sin3t (by chain rule)
=3sin2tcost√cos2t+sin3t(−12)(cos2t)−3/2×(−2sin2t)
dxdt=3sin2tcost√cos2t+sin2tsin2t(cos2t)3/2
dydt=ddt(cos3t√cos2t)
=ddx(cos3t)1√cos2t+ddx(1√cos2t)cos3t
=3cos2t(sint)√cos2t+(−12)(cos2t)−3/2×(−2sin2t)cos3t
=−3cos2tsint√cos2t+cos3tsin2t(cos2t)3/2
dydx=dy/dtdx/dt
=−3cos2tsint√cos2t+cos3tsin2t(cos2t)3/23sin2tcost√cos2t+sin3tsin2t(cos2t)3/2
=−3cos2tsintcos2t+cos3tsin2t3sin2tcostcos2t+sin3tsin2t
=−3cos2tsint(cos2t)+2cos4tsint3sin2tcostcos2t+2sin4tcost
=2cos3t−3costcos2t2sin3t+3sintcos2t
=2cos3t−3(cost)(2cos2t−1)2sin3t+3sint(1−2sin2t)=cos(t)[3−4cos2t3−4sin2t]