wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

xcos(a+y)=cosy
then prove that
dydx=cos2(a+y)sina

Open in App
Solution

It is given that cosy=xcos(a+y)

ddx[cosy]=ddx[xcos(a+y)]

sinydydx=cos(a+y)ddx(x)xddx[cos(a+y)]

sinydydx=cos(a+y)+x[sin(a+y)]ddx

[xsin(a+y)siny]dydx=cos(a+y)(1)

Since cosy=xcos(a+y),x=cosycos(a+y)

The eqa (1) reduces to

[cosycos(a+y)sin(a+y)siny]dydx=cos(a+y)

[cosysin(a+y)sinycos(a+y)]dydx=cos2(a+y)

sin[a+yy]dydx=cos2(a+b)\\ dydx=cos2(a+b)sina

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Implicit Differentiation
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon