wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

x=sin3tcos2t,y=cos3tcos2t

Open in App
Solution

Let,

x=sin3tcos2t …..(1)

and

y=cos3tcos2t …(2)

Differentiation with respect to t of equation (1) we get

dxdt=ddxsin3tcos2t



By quotient rule

dxdt=cos2t.ddtsin3tsin3tddtcos2t(cos2t)2

=cos2t.ddt3sin2tddtsintsin3t12(cos2t)12ddtcos2tcos2t

=cos2t(3sin2tcost)sin3t2cos2t(2sin2t)cos2t

dxdt=3sin2tcostcos2t+sin3tsin2t(cos2t)32

dxdt=sin2tcost(3cos2t+2sin2t)(cos2t)32



Differentiate equation (2) with respect to t

dydt=cos2t.ddtcos3tcos3tddtcos2t(cos2t)2

dydt=cos2t.3cos2t(sint)cos3t(12cos2t(2sin2t))cos2t

dydt=cos2t.3cos2t(sint)+cos3t(2sintcost)cos322t

dydt=3cos2t cos2t(sint)+2cos4t(sint)cos322t

Therefore,

dydtdxdt= dydx= 3cos2t cos2t(sint)+2cos4t(sint)cos322tsin2tcost(3cos2t+2sin2t)cos322t

=cost(2cos2t3(2cos2t1))sint(3(12sin2t)+2sin2t)

=cost(34cos2t)sint(34sin2t)

=(4cos3t3cost)3cost4cos3t

=cos3tsin3t

=cot3t

Hence, the value is cot3t.


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Parametric Differentiation
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon