Let,
x=sin3t√cos2t …..(1)
and
y=cos3t√cos2t …(2)
Differentiation with respect to t of equation (1) we get
dxdt=ddxsin3t√cos2t
By quotient rule
dxdt=√cos2t.ddtsin3t−sin3tddt√cos2t(√cos2t)2
=√cos2t.ddt3sin2tddtsint−sin3t12(cos2t)−12ddtcos2tcos2t
=√cos2t(3sin2tcost)−sin3t2√cos2t(−2sin2t)cos2t
dxdt=3sin2tcostcos2t+sin3tsin2t(cos2t)32
dxdt=sin2tcost(3cos2t+2sin2t)(cos2t)32
Differentiate equation (2) with respect to t
dydt=√cos2t.ddtcos3t−cos3tddt√cos2t(√cos2t)2
dydt=√cos2t.3cos2t(−sint)−cos3t(12√cos2t(−2sin2t))cos2t
dydt=cos2t.3cos2t(−sint)+cos3t(2sintcost)cos322t
dydt=−3cos2t cos2t(sint)+2cos4t(sint)cos322t
Therefore,
dydtdxdt= dydx= −3cos2t cos2t(sint)+2cos4t(sint)cos322tsin2tcost(3cos2t+2sin2t)cos322t
=cost(2cos2t−3(2cos2t−1))sint(3(1−2sin2t)+2sin2t)
=cost(3−4cos2t)sint(3−4sin2t)
=−(4cos3t−3cost)3cost−4cos3t
=−cos3tsin3t
=−cot3t
Hence, the value is −cot3t.