Consider the following equation.
Differentiate x&y w.r.t θ
x&y
dxdθ=eθ(sinθ+cosθ)+eθ(cosθ−sinθ).......(1)
dydθ=eθ(sinθ−cosθ)+eθ(cosθ+sinθ).......(2)
Divide by eq..(2) In eq. (1)
dydx=eθ(sinθ−cosθ+cosθ+sinθ)eθ(sinθ+cosθ+cosθ−sinθ)
=2sinθ2cosθ
=tanθ
Hence, this is the correct answer.