wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

x=sinty=cosmt
Prove (1x2)yn+2(2n1)yn+1(n2m2)yn=0

Open in App
Solution

x=sinty=cosmt
t=sin1(x) y=cos(msin1(x))
(1x2)yn+2(2n+1)xyn+1+(m2n2)yn=0
dydx=sin(msin1(x))=m1x2
1x2dydx=msin(msin1x)
(1x2)(dydx)2=m2[sin(msin1x))]2
=m2[1cos2(msin1x)]
(1x2)(dydx)2=m2[1y2] ∣ ∣ ∣ ∣dydx=y1d2ydx2=y2
(1x2)2y1y2+y21(2x)=m2(2y)y1
(1x2)y2xy1=m2y
(1x2)y2xy1+m2y=0
(1x2)ym+2+m(2x)ym+1m(n1)2.(2)ym
xyx+1xymm2yn=0
(1x2)yn+2x(2x++1)Yn+1+(n2+nn+m2)yx=0
(1x2)ym+2(2n+1)xyx+1+(m2n2)yx=0

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Mathematical Induction
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon