The correct option is D −π+42
We have
x=tcost, y=t+sint
By differentiating w.r. to t, we get
dxdt=−tsint+cost and dydt=1+cost
∴dxdy=dxdtdydt=cost−tsint1+cost
∴d2xdy2=ddt(dxdy)dydt
=(−2sint−tcost)(1+cost)−(cost−tsint)(−sint)(1+cost)21+cost
Now, put t=π2.
(dydx)x=π2=(−2sinπ2−π2cosπ2)(1+cosπ2)−(cosπ2−π2sinπ2)(−sinπ2)(1+cosπ2)21+cosπ2
=−(π+42)