given
y=√1−x1+x rationalizing the numerator by multilying with 1+x we get
y=√(1−x)(1+x)√(1+x)(1+x)=√1−x21+x
therefore y√1−x2=11+x
dividing with √1−x2 we get
y1−x2=1(1+x)√1−x2 let it be equation 1
now differentiating the equation we get
dydx=ddx(√1−x21+x)=(1+x)(12√1−x2)(−2x)−(√1−x2)(1+x)2
therefore dydx=−2x−2x2−2+2x22√1−x2(1+x)2=−1√1−x2(1+x)=−y1−x2
[since from equation 1]
therefore (1−x2)dy/dx+y=0