y=tan−1(1−2Logx1+2Logx)+tan−1(3+2Logx1−6Logx)
y=tan−11−2Logx1+2Logx+3+2Logx1−6Logx1−(1−2Logx1+2Logx)(3+2Logx1−6Logx)
=tan−1((1−6Logx)(1−2Logx)+(3+2Logx)(1+2Logx)(1+2Logx)(1−6Logx)−(1−2Logx)(3+2Logx))
=tan−1(1−8Logx+12Log2x+3+8Logx+4Log2x)1−4Logx−12Log2x−(3−4Logx−4Log2x)
=tan−1(4+16Log2x−2−8Log2x)
y=tan−1(−12)
y=c
dydx=0
d2ydx2=0