Determine the value of c such that the line joining (0,3),(5,-2) is a tangent to the curve y=cx+1.
4
3
23
1
Determine the value of c:
y=cx+1⇒dydx=-c(x+1)2
Calculate the slope using given points (0,3),(5,-2):
m=(y2-y1)(x2-x1)=(-2-3)5=-55=-1
Equation of the line joining (0,3)and(5,-2) is y-y1=m(x-x1)
y-3=-1(x-0)⇒y=-x+3.................(i)-1=-c(x+1)2(Slopeoflienandcurvearesameatpointofcontact)⇒c=(x+1)2
Now y=cx+1.
⇒y=(x+1)2x+1⇒y=(x+1)
-x+3=x+1(useequation....(i))⇒2=2x⇒x=1
So,
c=(1+1)2=22=4
Hence, the value of c is 4 that is “Option A” .
The line y = mx + 1 is a tangent to the curve y2 = 4x if the value of m is
(A) 1 (B) 2 (C) 3 (D)