Divide the given polynomial by the given monomial:
8(x3y2z2+x2y3z2+x2y2z3)÷4x2y2z2
8(x3y2z2+x2y3z2+x2y2z3)÷4x2y2z2=8(x3y2z2+x2y3z2+x2y2z3)4x2y2z2
Taking out common factors x2y2z2 in 8(x3y2z2+x2y3z2+x2y2z3)
⇒8(x3y2z2+x2y3z2+x2y2z3)=8x2y2z2(x+y+z)
Therefore,
8x2y2z2(x+y+z)4x2y2z2=2(x+y+z)
Hence, 8(x3y2z2+x2y3z2+x2y2z3)÷4x2y2z2 =2(x+y+z)