wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Evaluate::sin6x+cos6xsin2xcos2x


Open in App
Solution

To evaluate: sin6x+cos6xsin2xcos2xdx

LetI =sin6x+cos6xsin2xcos2xdx

=(sin2)3x+(cos2x)3sin2xcos2xdx

=(sin2)3x+(cos2x)3sin2xcos2xdx

=(sin2)x+(cos2x)[(sin2x)2+(cos2x)2-sin2xcos2x]sin2xcos2xdx [Formula used: a3+b3=(a+b)(a2+b2-ab)]

=[(sinx)4+(cosx)4-sin2xcos2x]sin2xcos2xdx [Identity used: (sin2)x+(cos2)x=1]

= [(sinx)4+(cosx)4+2sin2xcos2x-3sin2xcos2x]sin2xcos2xdx

= [(sinx2+cosx2)2-3sin2xcos2x]sin2xcos2xdx

=1-3sin2xcos2x]sin2xcos2xdx [Identity used: (sin2)x+(cos2)x=1]

= 1sin2xcos2x-3sin2xcos2xdx

=sin2x+cos2xsin2xcos2x-3sin2xcos2xdx [Identity used: (sin2)x+(cos2)x=1]

=sin2xsin2xcos2x+cos2xsin2xcos2x-3sin2xcos2xdx

=sin2xsin2xcos2xdx+cos2xsin2xcos2xdx-3sin2xcos2xdx

=1cos2xdx+1sin2xdx-3sin2xcos2xdx

=sec2xdx+cosec2xdx-3sin2xcos2xdx [Identity used: 1cosx=secx and 1sinx=cosecx]

=sec2xdx+cosec2xdx-3sin2xcos2xdx

I=tanxcotx3x+C

Hence I=tanxcotx3x+C


flag
Suggest Corrections
thumbs-up
13
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Integration by Parts
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon