wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If 1+sin2θ=3sinθcosθ, then prove that tanθ=1 or 12.


Open in App
Solution

Solve for the required proof

Given: 1+sin2θ=3sinθcosθ

sin2θ+cos2θ+sin2θ=3sinθcosθ sin2θ+cos2θ=1

2sin2θ+cos2θ=3sinθcosθ

2sin2θcos2θ+cos2θcos2θ=3sinθcosθcos2θ [Dividing both sides by cos2θ]

2tan2θ+1=3sinθcosθ sinθcosθ=tanθ

2tan2θ+1=3tanθ

2tan2θ-3tanθ+1=0

2tan2θ-2tanθ-tanθ+1=0

2tanθtanθ-1-1tanθ-1=0

2tanθ-1tanθ-1=0

tanθ=1 or 12

Hence proved.


flag
Suggest Corrections
thumbs-up
1.4k
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Basic Inverse Trigonometric Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon