If 1+sin2θ=3sinθcosθ, then prove that tanθ=1 or 12.
Solve for the required proof
Given: 1+sin2θ=3sinθcosθ
⇒ sin2θ+cos2θ+sin2θ=3sinθcosθ ∵sin2θ+cos2θ=1
⇒ 2sin2θ+cos2θ=3sinθcosθ
⇒ 2sin2θcos2θ+cos2θcos2θ=3sinθcosθcos2θ [Dividing both sides by cos2θ]
⇒ 2tan2θ+1=3sinθcosθ ∵sinθcosθ=tanθ
⇒ 2tan2θ+1=3tanθ
⇒ 2tan2θ-3tanθ+1=0
⇒ 2tan2θ-2tanθ-tanθ+1=0
⇒2tanθtanθ-1-1tanθ-1=0
⇒ 2tanθ-1tanθ-1=0
⇒ tanθ=1 or 12
Hence proved.
loge(n+1)−loge(n−1)=4a[(1n)+(13n3)+(15n5)+...∞] Find 8a.