If x2+y2=1, then
yy"-2y'2+1=0
yy"+y'2+1=0
yy"-y'2+1=0
None of these
Step 1: Differentiate the given equation.
Differentiate x2+y2=1 with respect to x.
⇒2x+2yy'=0...(1) [Since, d(xn)dx=nxn-1]
Step 2: Differentiate equation 1.
Differentiate equation 1 with respect to x.
2+2y'2+2yy"=0⇒yy"+y'2+1=0 [Since, d(f(x)g(x))dx=f(x)g'(x)+f'(x)g(x)]
Hence, option B is the correct answer.
If cos−1(x2−y2x2+y2)=loga then dydx =