Prove that sinA(1+tanA)+cosA(1+cotA)=secA+cosecA
As we have sinA(1+tanA)+cosA(1+cotA)=secA+cosecA
Taking LHS sinA(1+tanA)+cosA(1+cotA)
⇒sinA1+sinAcosA+cosA1+cosAsinA⇒sinAcosA+sinAcosA+cosAsinA+cosAsinA⇒sinA+cosAsinAcosA+cosAsinA⇒sinA+cosAsin2A+cos2AcosAsinA⇒sinA+cosA(1)cosAsinA∵sin2A+cos2A=1⇒sinAcosAsinA+cosAcosAsinA⇒1cosA+1sinA⇒secA+cosecA
Hence LHS=RHS proved.
Prove that