Prove That tan2A-sin2A=tan2A×sin2A
Determine the proof of the given expression that is tan2A-sin2A=tan2A×sin2A.
Solve the L.H.S part:
tan2A-sin2A=sin2Acos2A-sin2A⇒=sin2A-sin2A.cos2Acos2A⇒=sin2A(1-cos2A)cos2A∵sin2A+cos2A=1⇒=sin2A.sin2Acos2A⇒=sin2A×sin2Acos2A⇒=sin2A.tan2A
Hence, the L.H.S = R.H.S.
Prove the following trigonometric identities:
(1+tan2A)+(1+1tan2A)=1sin2A−sin4A
Prove that:
sin2A / (tan2A-sin2A) = 3