wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that: tan3Atan2AtanA=tan3A−tan2A−tanA


Open in App
Solution

Determine the proof of the given expression tan3Atan2AtanA=tan3A−tan2A−tanA

Solve the L.H.S part:

Since we know that 3A=2A+A............................(i)
taking the tan both sides of the above equation.
tan3A=tan(2A+A)⇒tan3A=tan2A+tanA(1-tan2A.tanA)⇒tan3A(1-tan2AtanA)=tan2A+tanA⇒tan3A-tan3Atan2AtanA=tan2A+tanA⇒tan3A-tan2A-tanA=tan3Atan2AtanA
Hence, the L.H.S = R.H.S.


flag
Suggest Corrections
thumbs-up
149
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Transformations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon