Prove the following identity, where the angles involved are acute angles for which the expression is defined.
sinA+cosecA2+cosA+secA2=7+tan2A+cot2A
Solve for the required proof
Given that sinA+cosecA2+cosA+secA2=7+tan2A+cot2A
Consider the L.H.S.
sinA+cosecA2+cosA+secA2=sin2A+cosec2A+2·sinA·cosecA+cos2A+sec2A+2·cosA·secA ∵a+b2=a2+2ab+b2
=sin2A+cos2A+cosec2A+sec2A+2·sinA·1sinA+2·cosA·1cosA ; ∵cosecA=1sinA,secA=1cosA
=1+1+cot2A+1+tan2A+2+2 ∵sin2A+cos2A=1,1+cot2A=cosec2A,1+sec2A=tan2A
=7+tan2A+cot2A
=R.H.S
⇒L..H.S=R.H.S
Hence, it proved that sinA+cosecA2+cosA+secA2=7+tan2A+cot2A is an identity.
Prove the following identities, where the angles involved are acute angles for which the expressions are defined.