wiz-icon
MyQuestionIcon
MyQuestionIcon
3
You visited us 3 times! Enjoying our articles? Unlock Full Access!
Question

The principal value of cos-112cos9π10-sin9π10 is equal to


Open in App
Solution

Finding the principal value of cos-112cos9π10-sin9π10:

cos-112cos9π10-sin9π10=cos-112cos9π10-12sin9π10=cos-1cosπ4cos9π10-sinπ4sin9π10(cos(π4)=12,sin(π4)=12)=cos-1cosπ4+9π10(cos(A+B)=cos(A)cos(B)-sin(A)sin(B))=cos-1cos23π20=cos-1cos20π+3π20=cos-1cos20π20+3π20=cos-1cosπ+3π20=cos-1-cos3π20(cos(π+θ)=-cos(θ))=π-cos-1cos3π20(cos-1(-x)=π-cos-1(x))=π-3π20=17π20

Hence, the principal value of cos-112cos9π10-sin9π10 is 17π20.


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Standard Expansions and Standard Limits
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon