f(x)=cos2tan-1sincot-11-xx then
(1-x)2f'(x)–2(f(x))2=0
(1-x)2f'(x)+2(f(x))2=0
(1+x)2f'(x)–2(f(x))2=0
(1+x)2f'(x)+2(f(x))2=0
Explanation for the correct option:
Step 1. Find the value of given function:
f(x)=cos2tan-1sincot-11-xx
⇒f(x)=cos2tan-1sinsin-1x ∵cot-11-θθ=sin-1θ
⇒f(x)=cos2tan-1x
⇒f(x)=coscos-11-x1+x ∵2tan-1θ=cos-1(1-θ21+θ2)
⇒f(x)=1-x1+x
Differentiate it with respect to x
f'(x)=-1×(1+x)-1×(1-x)(1+x)2 ∵u(x)v(x)=u'(x).v(x)-v'(x).u(x)v(x)2
=-1-x-1+x1+x2=-21+x2
Step 2. Multiply both sides by 1-x2
(1-x)2f'(x)=-2(1+x)2(1-x)2
⇒ (1-x)2f'(x)=-21-x1+x2
⇒ (1-x)2f'(x)=-2f(x)2
∴(1-x)2f'(x)+2(f(x))2=0
Hence, Option ‘B’ is Correct.
If f=x1+x2+13(x1+x2)3+15(x1+x2)5+... to ∞ and g=x−23x3+15x5+17x7−29x9+..., then f=d×g. Find 4d.