If α=cos-135,β=tan-113, where 0<α,β<π2, then α-β is equal to:
tan-19510
sin-19510
tan-1915
cos-19510
Find the value of α-β:
Given,
α=cos-135=tan-143
β=tan-113
∴α-β=tan-143–tan-113
=tan-143-131+43×13 ∵tan-1A-tan-1B=tan-1(A-B1+AB)
=tan-111+49
=tan-1913
=sin-19132+92 ∵tan-1(AB)=sin-1(1A2+B2)
=sin-19250
=sin-1(9510)
Hence, Option ‘B’ is Correct.