1(32-1)+1(52-1)+1(72-1)+…….+1(2012-1) is equal to
101404
99400
25101
101408
Explanation for the correct option:
Finding the value of the given expression:
Given sum 1(32-1)+1(52-1)+1(72-1)+…….+1(2012-1)
Since, each term in given expression can be written in the form of an=12n+12-1 so, Taking Sum of this expression we get
∑n=1100=12n+12-1=14n2+4n+1-1[(a+b)2=a2+2ab+b2]=∑n=110012n(2n+2)=12∑n=110022n(2n+2)=12∑n=1100(2n+2)-2n2n(2n+2)=12∑n=110012n-1(2n+2)=1212-14+14-16+16-18+.....+1200-1202=1212-1202=1002×202=25101
Hence the correct answer is option (C).
loge(n+1)−loge(n−1)=4a[(1n)+(13n3)+(15n5)+...∞] Find 8a.