The value of log34log45log56log67log78log89 is
1
2
3
4
Explanation for the correct answer:
Compute the required value:
We know that logba=logalogb
Hence the given expression can be written as
log34log45log56log67log78log89=log4log3×log5log4×log6log5×log7log6×log8log7×log9log8
=log9log3
=log32log3 ∵logam=mloga
=2log3log3
⇒ log34log45log56log67log78log89=2
Hence the value of log34log45log56log67log78log89 is 2.
Hence, option B is the correct answer.