The integral is given as follows,
I= ∫ ( x 2 +1 )logxdx
Rewrite the given integral as,
I= ∫ x 2 logx + ∫ logxdx I= I 1 + I 2
Assume, I 1 = ∫ x 2 logxdx
Use integration by parts rule. Consider logx as first function and x 2 as second function.
I 1 = ∫ x 2 logxdx I 1 =logx ∫ x 2 dx − ∫ ( d dx logx ∫ x 2 dx )dx I 1 = x 3 logx 3 − ∫ 1 x × x 3 3 dx
On further integrating, we get,
I 1 = x 3 logx 3 − 1 3 ∫ x 2 dx I 1 = x 3 logx 3 − 1 9 x 3 + C 1
Assume, I 2 = ∫ logxdx
Consider logxas first function and 1as second function. Use integration by parts.
I 2 = ∫ logx×1dx I 2 =log ∫ dx − ∫ ( d dx logx ∫ dx )dx
On further integrating, we get,
I 2 =xlogx− ∫ 1 x ×xdx I 2 =xlogx− ∫ dx I 2 =xlogx−x+ C 2
Substitute the values of I 1 and I 2 in I,
I= I 1 + I 2 = x 3 logx 3 − 1 9 x 3 + C 1 +xlogx−x+ C 2 = x 3 logx 3 +xlogx− x 3 9 −x+C I=( x 3 3 +x )logx− x 3 9 −x+C
Thus, the integration of ∫ ( x 2 +1 )logxdx is ( x 3 3 +x )logx− x 3 9 −x+C.