(2a+3b)2=
4a2+9b2+12ab
4a3+9b2+12ab
4a2+9b2+36ab
4a2+9b3+12ab
Using the identity (a+b)2=a2+b2+2ab, we get,
(2a+3b)2=(2a)2+(3b)2+2×2a×3b
=4a2+9b2+12ab
What is the LCM of (2a+3b)2 and (4a2–9b2)
Factorise:
a2−(2a+3b)2