The integral is given as follows
I= ∫ ( 2x−3 ) ( x 2 −1 )( 2x+3 ) dx
Use partial fraction rule to simplify the fraction.
( 2x−3 ) ( x+1 )( x−1 )( 2x+3 ) = A ( x+1 ) + B ( x−1 ) + C ( 2x+3 ) 2x−3=A( x−1 )( 2x+3 )+B( x+1 )( 2x+3 )+C( x 2 −1 )
Substitute x=1then,
B= −1 10
Substitute x=−1then,
A= 5 2
Substitute x=0then,
−3A+3B−C=−3
Substitute the values and solve for C
C= −24 5
On Integrating, we get
I= ∫ ( 2x−3 )dx ( x+1 )( x−1 )( 2x+3 ) = 5 2 ∫ dx x+1 − 1 10 ∫ dx x−1 − 24 5 ∫ dx ( 2x+3 ) = 5 2 log| x+1 |− 1 10 log| x−1 |− 24 5 × 1 2 log| 2x+3 |+C I= 5 2 log| x+1 |− 1 10 log| x−1 |− 12 5 log| 2x+3 |+C