Identities for Irrational Numbers
Trending Questions
Simplify : √3−2√2.
Simplify .
Simplify: 6√36+5√12
Simplify (2√5+3√2)2
(√a − √b)×(√a + √b) =
√a − b
a + √b
a − b
a + b
(−2−√3)(−2+√3) when simplified is
(a) positive and irrational (b) positive and rational (c) negative and irrational (d) negative and rational
Which of the following is the value of (√11−√7)(√11+√7)?
(a) -4
(b) 4
(c) √11
(d) √7
- 5+2√3
- 5+2√2
- 5+2√6
- 3+2√6
The value of √3−2√2 is
(a)√3+√2 (b)√3−√2 (c)√2+1 (d)√2−1
Solve (3−√11)(3+√11)
Question 2 (iv)
Simplify (√5−√2)(√5+√2) .
Find the values of a and b
if 5+2√37+4√3=a+b√3
a=11, b=−6
a=9, b=−6
a=−11, b=6
a=−9, b=6
Show all work to multiply quantity plus the square root of negative end quantity times quantity minus the square root of negative end quantity.
On her birthday Reema distributed chocolates in an orphanage. The total number of chocolates she distributed is given by (5+√11)(5−√11)
- 3
- 1
- 8
- 13
Question 2 (iv)
Simplify (√5−√2)(√5+√2) .
Simplify
(i) (3−√11)(3+√11)
(ii) (−3+√5)(−3−√5)
(iii) (3−√3)2
(iv)(√5−√3)2
(v) (5+√7)(2+√5)
(vi)(√5−√2)(√2−√3)
- 2
- 1
- 2√2
- √6
- 4√3√2(√5−√3)
- 4√32(√5−√3)
- √24√3(√5−√3)
- 4√3√2(√5+√3)
If x2=7−√48, then x =
2+√3
2−√3
2√3
4
5√6×5√6 is equal to
5√6×0
5√6
5√12
5√36
- 1
- √7
- 8−2√7
- √7−1
√248+√549.
- 13
- −3
- 23
- 5+2√3
- 5+2√2
- 5+2√6
- 3+2√6