Division of Polynomials
Trending Questions
Q. Question 4(v)
Factorise
a4−2a2b2+b4
Factorise
a4−2a2b2+b4
Q. Factorise the following.
(A) 4x2−20x+25
(B) a3−4a2+12−3a
(A) 4x2−20x+25
(B) a3−4a2+12−3a
Q. Solve: (35x5+14x3−28x2)÷−7x
- −5x4−2x2+4x
- +5x4+2x2−4x
- −5x4−2x2+4x
- −5x4+2x2+4x
Q. Factorise:
(x2−2xy+y2)−z2
(x2−2xy+y2)−z2
- (x−y−z)(x−y+z)
- (x+y+z)(x−y+z)
- (x+y−z)(x−y+z)
- (x+y+z)(x−y−z)
Q. If y=2, then the value of (xy+2x)x will be
- 1
- 2
- 3
- 4
Q. Solve: (35x5+14x3−28x2)÷(−7x)
Q. x2 - (100×(y+z)2)÷(x−10y−10z)
- x+10×(y+z)
- x+10×(y+z)
- x+100×(y+z)
- x+10×(y)+10×(z)
Q. The quotient obtained when pq2+5pq+6p is divided by pq+2p is
- q+3
- q−3
- q+2
- pq+3p
Q.
4yz(z2+6z−16)÷2y(z+8) gives
None of these
z-2
z(z-2)
2z(z-2)
Q.
36−12xy+y2 is a perfect square trinomial
5
6
Q. Factorise :
(i) x2+8x+16 (ii) 4a2−4a+1
(i) x2+8x+16 (ii) 4a2−4a+1
Q. Factorise:
(i) x2+8x+16 (ii) 4a2−4a+1
(i) x2+8x+16 (ii) 4a2−4a+1
Q. Factorise :
(i) x2+8x+16 (ii) 4a2−4a+1
(i) x2+8x+16 (ii) 4a2−4a+1
Q. Factorize the following algebraic expression:
a2−2ab+b2−c2
a2−2ab+b2−c2
Q. Find the remainder when 30y4+11y3−42y2+3 is divided by 3y2+2y?
- 0
- 2y+3
- -24y + 3
- y-2
Q.
Dividing (a+b)2+(a−b)2 by (a2+b2) gives
Q. Factorise :
(i) x2+8x+16
(ii) 4a2–4a+1
(i) x2+8x+16
(ii) 4a2–4a+1
Q. Factorise :
(i) x2+8x+16
(ii) 4a2–4a+1
(i) x2+8x+16
(ii) 4a2–4a+1
Q. Factorize the following algebraic expression:
(a2−5a)2−36
(a2−5a)2−36
Q. Solve: (35x5+14x3−28x2)÷−7x
Q. Factorise:
a4−b4
a4−b4
Q. Factorise:
a4−b4
a4−b4
Q.
The value of 52xyz(xy+yz+xz+y2)(z+x)÷104xy(xy+xz+yz+y2) is:
z(z+x)2
z(z−x)2
x(z−x)2
x(z+x)2
Q. Factorize the following algebraic expression:
a2+2ab+b2−16
a2+2ab+b2−16