Factorisation using algebraic identities
Trending Questions
How do you factor ?
Factorise .
Factorise:
Factorise:
- (x+3)(x2+3x+9)
- (x−3)(x2−3x+9)
- (x−3)(x2+3x−9)
- (x−3)(x2+3x+9)
Question 92 (xxi)
Factorise the following using the identity a2−b2=(a+b)(a−b).
p5−16p
Factorise:
Factors of
−x3−125
(x+5)(x2−5x+25)
−1(x+5)(x2−5x+25)
(x−5)(x2+5x−25)
−1(x−5)(−x2−5x+25)
Factorise
25a2−4b2+28bc−49c2
Question 92 (xix)
Factorise the following using the identity a2−b2=(a+b)(a−b).
x4−1
- (x−3)(x2+3x+9)
- (x+3)(x2+3x+9)
- (x−3)(x2−3x+9)
- (x−3)(x2+3x−9)
Question 92 (iv)
Factorise the following using the identity a2−b2=(a+b)(a−b).
3a2b3−27a4b
Factorize
What is the factorised expression for x3−27?
(x−3)(x2+3x+9)
(x+3)(x2+3x+9)
(x−3)(x2−3x+9)
(x−3)(x2+3x−9)
- (a+2b)2
- (2a−b)2
- (4a+b)2
- (2a+b)2
Question 92 (i)
Factorise the following using the identity a2−b2=(a+b)(a−b).
x2−9
(i) (p2 – 2pq + q2) – r2
(ii) (x + y)2 – (x – y)2
[1 mark + 2 marks = 3 marks]
Question 92 (xviii)
Factorise the following using the identity a2−b2=(a+b)(a−b).
a4−(a−b)4
- 5 factors
- 4 factors
- 2 factors
- 3 factors
Factorise .
36a2−81 can be factorized as ______.
(6a+81)(6a−81)
(6a−9)(36a+9)
- (6a+9)(6a−9)
- (36a+9)(36a−9)
m2+6m.
- 9
- - 8
- 8
- - 9
One of the factors of x2−2x−15 is _____.
x - 15
x+3
x-3
x+5
- x−1x
- x2+1x2
- x+1x
- x−1x−1
Which of the following is a factor of x2−6x−16?
x + 8
8 - x
x - 6
x - 2
- (3x+y+z)(9x2+y2+z2−3xy−yz−3xz)
- (3x+y+z)(9x2+y2+z2+3xy+yz+3xz)
- (3x−y+z)(9x2+y2−z2+3xy+yz+3xz)
- (3x−y−z)(9x2+y2+z2−3xy−yz−3xz)
A factor of a2−2ab+b2−c2 is ___________.
a-b+c
a-b-c
Both 1 and 2
a+b-c
Factorise the following, using the identity, a2−2ab+b2=(a−b)2.
x24−2x+4