Method of Common Factors
Trending Questions
Factorize the following using appropriate identities: .
Factorize:
a4−5a2−36
(a−3)(a+3)(a+2)(a−2)
(a2+9)(a2+4)
(a−9)(a+4)
(a−3)(a+3)(a2+4)
One of the factors of x2−2x−15 is _____.
x-3
x+5
x - 15
x+3
Which of the following represents the factorisation of 2xy+6y2?
2y(x+3y)
3y(x+2y)
4x(x+3y)
- 6y(x+y)
Factor it completely :
Factorisation of 81x3−xy2 gives
x(9x−y)(9x+y)
x(9x−y)(9x−1)
x2(9x+y)
x(9y−x)(9x+y)
(2x3−12x2+16x)÷(x−2)(x−4)
What are the common factors of 3x3y, 5xy2 and 15xy?
x, y, xy, xy2, x3y
x, y, xy, x2y
x, y, xy
xy, x2y, xy2
Factorise m2+7m−60−16n2
(m+3−4n)(m+3−4n)
(m+3+4n)(m+3−4n)
(m−3+4n)(m−3−4n)
(m+2+4n)(m+2−4n)
Factor(s) of a2−2ab+b2−c2 is/are
a-b+c
a-b-c
Both 1 and 2
None of the above
- (3x−2)(2y+3)
- (3x+2)(2y−3)
- (3x−2)(2y−3)
- (3x+2)(2y+3)
Factorise a2+7a+10 + pa + 5p
(a+5) + (a+ 2+ p)
(a+5) + (a+ p)
(a+2) + (a+ 5+ p)
(a+7+ p) + (a+ p)
- (4b+3)
- (3a−4)
- (3a + 4)(4b + 3)
- (3a + 4)(4b - 3)
Factorisation of a2+7a+10 gives:
1
a+1
a+5
a+2
10lm is one of the factors of 20l2m+30alm.
The other factor is
5l+3m
3l+2a
2l+3a
3l+2m
2a+6b−3(a+3b)2
=2(a+3b)−3(a+3b)2 [Taking 2 common from 2a+6b]
=(a+3b){2−3(a+3b)} [Taking (a+3b) common]
=(a+3b)(2−3a−9b)
(2 marks)
Factorise a2−81(b−c)2
(a+ 81b- 81c)(a-81b-81c)
(a+ 9b- 9c)(a-9b-9c)
(a+ 9b+9c)(a-9b-9c)
(a-b+c)(a-b-c)
Factorize:
25(a−5b)2−4(a−3b)2
(3a−19b).(7a+31b)
(7a−19b).(3a−31b)
(3a+19b).(7a+31b)
(3a−19b).(7a−31b)
Which of the following is one of the factors of
(x4+x2−20)
(x2+4)
(x−4)
(x2+5)
(x2−5)
Which of the following are the factors of
x2+4(x−3)
(x + 6)
(x - 6)
(x + 2)
(x - 2)
The possible expressions for the adjacent sides of the rectangle having
35y2+13y−12 as its area are ____ and ____
(5y−4) and (7y+3)
(5y+4) and (7y−3)
(5y−4) and (7y−3)
(5y+4) and (7y+3)
(x+4)2−5xy−20y−6y2=
(x−6y+4)(x+y+4)
(x+6y+4)(x+y+4)
(x−6y+4)(x−y−4)
(x−6y+4)(x−y+4)
Factors of a2−b2−4ac+4c2 are
(a−2c+b) and (a+2c−b)
True
False
Factorize completely :
x2−16y2−2x−8y
(x+4y)(x−4y−2)
(x+4y)(x+4y−2)
(x−4y)(x+4y−2)
(x+4y)(x−4y+2)
a. (xy-7)(x2y2+7xy+49)
b. (xy-7)(x2y2−7xy+49)
c. (xy+7)(x2y2+7xy+49)
d. (xy+7)(x2y2−7xy+49)
[1]
Factorize 2x6+12x2
2x2(x4+6)
2x(x4+6)
2x2(x2+6)
2x2(x3+6)
Factor the expression using GCF.
Factorize: (a^2 - ab - 3a + 3b)
(a + b)(a - 3)
(a + b)(a + 3)
(a - b)(a - 3)
(a - b)(a + 3)
Factorize:
a2−b2−2b−1
[a−b−1][a−b−1]
[a−b−1][a+b+1]
[a+b+1][a−b+1]
[a−b+1][a+b−1]