Range of Trigonometric Expressions
Trending Questions
Q. Find the principal value of tan−1(−√3)
Q. Find the principal value of tan−1(−1).
Q.
The range of f(x)=11−2 cos x is
[13, 1]
[−1, 13]
[−13, 1]
[−∞, −1]∪[13, ∞]
Q.
If then is equal to
Q. The domain and range of the function f(x)=12−cos3x is
- R−{2}, [13, 1]
- R, [13, 1]
- R, [−13, 13]
- R−{2}, [−13, 13]
Q.
If the equation has real solutions for , then lies in the interval
Q. The number of integral value(s) in the range of the expression 6tanx+4−4tan2x1+tan2x is
Q.
Write the maximum and minimum values of cos (cos x).
Q.
Write the maximum and minimum values of sin (sin x).
Q. Let x, y, z be real numbers with x≥y≥z≥π12 such that x+y+z=π2. If p=cosxsinycosz, then
- the maximum value of p is 2+√38
- the minimum value of p is 18
- the maximum value of p is attained when x=y=5π24 and z=π12
- the minimum value of p is attained when x=y=z=π6
Q.
The minimum value of , is
Q.
Write the maximum value of sin (cos x).
Q. The maximum value of 3cosθ+5sin(θ−π6) for any real value of θ is:
- √792
- √19
- √31
- √34
Q.
The range of f(x)=cos[x], for −π2<x<π2 is
[-1, 1]
{cos 1, - cos 1, 1}
{cos 1, cos 2, 1}
{-1, 1, 0}
Q. 36. Differentiate the function with respect to x :- Sin(ax+b)/cos(cx+d)
Q.
General solution of tan 5θ=cot 2θ is
nπ7+π2, n∈Z
θ=nπ7+π3, n∈Z
θ=nπ7+π14, n∈Z
θ=nπ7−π14, n∈Z
Q.
Function is monotonic increasing, if
Q. The range of the function f(x)=13sinx+4cosx−2 is
- R−{0}
- [−17, 13]
- R−[−17, 13]
- R−(−17, 13)
Q. If x and y are positive integers satisfying tan−1(1x)+tan−1(1y)=tan−1(17), then the number of ordered pairs of (x, y) is
Q. Prove that (2√3+3)sinθ+2√3cosθ lies between -(2√3+√15) and (2√3+√15).
Q. The minimum value of (sin2θ+cos2θ+sec2θ+cosec2 θ+tan2θ+cot2θ) is
Q.
If in a ΔABC, tan A + tan B + tan C = 0, then cot A cot B cot C =
16
6
1
none of these
Q. limh→0(a+h)2 sin(a+h)−a2 sin ah=
- a cos a+a2 sin a
- a sin a+a2 cos a
- 2a sin a+a2 cos a
- 2a cos a+a2 sin a
Q. Let f be a function defined as f(x)=sec−1(1+cos2x), then
- the domain of f is R
- the domain of f is [0, π]
- the range of f is [0, π2]
- the range of f is [0, π3]
Q. The general solution of tan2θ=3 is(nϵZ)
Q.
The value of a cos θ + b sin θ lies between
a and b
a-b and a+b