Summation Using Sigma
Trending Questions
Q. For positive integer n, define f(n)=n+16+5n−3n24n+3n2+32+n−3n28n+3n2+48−3n−n212n+3n2+...+25n−7n27n2
Then, the value of limn→∞f(n) is eequal to
Then, the value of limn→∞f(n) is eequal to
- 4−34loge(73)
- 4−43loge(73)
- 3+34loge7
- 3+43loge7
Q. If x1=3 and xn+1=√2+xn, n≥1, then limn→∞xn is
Q. limn→∞n∑r=1rn2+n+r is equal to
- 0
- 13
- 12
- 1
Q. If limx→2n∑r=1xr−n∑r=12rx−2=f(n), then which of the following is/are CORRECT?
- f(2020)=1999(2)2020+1
- f(2020)=505(2)2022+1
- f(6)=321
- f(10)=9217
Q. Value of limn→∞1n3[1+3+6+⋯+n(n+1)2] is
- 124
118
112
16
Q. The value of limn→∞(n!(mn)n)1/n, where m∈N is equal to
- 1em
- me
- em
- em
Q. limn→∞((n+1)1/3n4/3+(n+2)1/3n4/3+⋯+(2n)1/3n4/3) is equal to
- 34(2)4/3−34
- 43(2)4/3
- 34(2)4/3−43
- 43(2)3/4
Q. Evaluate the limit:
limx→1{x−2x2−x−1x3−3x2+2x}
limx→1{x−2x2−x−1x3−3x2+2x}
Q. The value of limn→∞11+22+33+⋯+nn1n+2n+3n+⋯+nn is
- e−1e
- ee−1
- 1e−1
- e−1e+1
Q. limx→2(9∑n=1xn(n+1)x2+2(2n+1)x+4) is equal to:
- 736
- 15
- 524
- 944
Q. Evaluate the limit:
limx→08x−4x−2x+1x2
limx→08x−4x−2x+1x2
Q. The value of limn→∞1⋅2+2⋅3+3⋅4+⋯+n(n+1)n3 is
- 1
- −1
- 13
- −13
Q.
Evaluate: limx→0ax+bcx+d, d≠0
Q. limn→∞((n+1)1/3n4/3+(n+2)1/3n4/3+⋯+(2n)1/3n4/3) is equal to
- 34(2)4/3−34
- 43(2)4/3
- 34(2)4/3−43
- 43(2)3/4
Q.
If Un=∣∣
∣
∣∣n15n22N+12N+1n33N23N+1∣∣
∣
∣∣ and N∑n=1Un=λN∑n=1n2, then the value of λ is
Q. Evaluate the limit:
limx→∞3x−1+4x−25x−1+6x−2
limx→∞3x−1+4x−25x−1+6x−2
Q. Let [y] denote the greatest integer less than or equal to y. If f:(0, ∞)→N is defined by f(x)=[x2+x+1x2+1]+[4x2+x+22x2+1]+[9x2+x+33x2+1]+⋯+[n2x2+x+nnx2+1] for n∈N, then the value of limn→∞⎛⎜
⎜
⎜⎝f(x)−n(f(x))2−n3(n+2)4⎞⎟
⎟
⎟⎠ is
Q. The value that we must assign to (cosx)1x at x = 0 so that the function will be continuous at x = 0 is:
- -1
- e
- 0
- 1
Q.
Evaluate
limx→a√a+2x−√3x√3a+x−2√x(from00) Q. If In=1∫0dx(1+x2)n, where n∈N, then which of the following is/are correct ?
- 2nIn+1=2−n+(2n−1)In
- I2=14+π8
- I2=π8−14
- I3=14+3π32
Q.
If and , then
Q. Evaluate limx→∞5x2+4√2x4+1
Q. limn→∞nPnn+1Pn−nPn=
Q. If X is Poisson variate with P(X=0)=P(X=1), then P(X=2)=
- e2
- e6
- 12e
- 16e
Q. If limn→∞(1λ+2λ+3λ+−−+nλ)(14+24+−−+n4)(13+23+−−+n3)=F(λ), λ ϵ N, then
- F(λ) is finite for λ≤8
- F(8)=2011
- F(8)=209
- F(7)=0
Q. Statement 1: Let f(x)=limm→∞(limn→∞cos2m(n!πx)), and g(x)={0, if x is rational 1, if x is irrrational . Then h(x)=f(x)+g(x) is continuous for all x.
Statement 2: f(x) and g(x) are discontinuous functions for x∈R.
Statement 2: f(x) and g(x) are discontinuous functions for x∈R.
- Both the statements are true and Statement 2 is the correct explanation of Statement 1.
- Both the statements are true and Statement 2 is not the correct explanation of Statement 1.
- Statement 1 is true and Statement 2 is false
- Statement 1 is false and Statement 2 is true
Q. If limn→∞(1λ+2λ+3λ+−−+nλ)(14+24+−−+n4)(13+23+−−+n3)=F(λ), λ ϵ N, then
- F(λ) is finite for λ≤8
- F(8)=2011
- F(8)=209
- F(7)=0
Q. Prove that :
limx→1x4−√x√x−1=7
limx→1x4−√x√x−1=7
Q. The value of limn→∞n∑k=1(n−kn2)cos4kn=1a(1−cos c), then
- a+c=20
- ac=4
- a−c=12
- ac=16
Q. limx→√2x2−2x2+3√2x−8