The correct option is
D (a+b−2)(a2+b2+2ab+4a+2a+2b)We solve the given expression
a3+3a2b+3ab2+b3−8 as shown below:
a3+3a2b+3ab2+b3−8=(a+b)3−(2)3(∵(x+y)3=x3+y3+3x2y+3xy2)=(a+b−2)[(a+b)2+22+2(a+b)](∵x3−y3=(x−y)(x2+y2+xy))=(a+b−2)(a2+b2+2ab+4+2a+2b)(∵(x+y)2=x2+y2+xy)
Hence, a3+3a2b+3ab2+b3−8=(a+b−2)(a2+b2+2ab+4+2a+2b)