A Conductor with rectangular cross-section has dimensions (a×2a×4a) as shown in figure. Resistance across AB is x, across CD is y and across EF is z. Then
A
x=y=z
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
x>y>z
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
y>z>x
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
x>z>y
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct option is Dx>z>y Formula of resistance is
R=Resistivity×lengthArea of cross-section=ρlA
Length l is along the direction of flow of current.
Area A is perpendicular to direction of flow of current.
For resistance across AB:
A=2a2;l=4a
RAB=ρ×4a2a2=2ρa=x
Similarly,
RCD=ρ×a8a2=ρ8a=y
REF=ρ×2a4a2=ρ2a=z
From above expression, we get
x>z>y
Hence, option (d) is correct.
Why this Question ?Same piece of a conductor can have differentresistances depending on the points between which we have to find.