The correct option is
C →0We know that the angle subtended by an arc at the centre is double the angle subtended by the arc at any point
Hence, if A,B and C denotes ∠A,∠B and ∠C respectively.
∠AOB=2C,∠BOC=2A and ∠COA=2B
Now ∣∣→OA∣∣=∣∣→OB∣∣=∣∣→OC∣∣=runits
Now let:
→v=→OAsin(2A)+→OBsin(2B)+→OCsin(2C)...(1)
Taking dot product with →OA on both sides:
→v.→OA=→OA.→OAsin(2A)+→OB.→OAsin(2B)+→OC.→OAsin(2C)
As →P.→Q=∣∣→P∣∣.∣∣→Q∣∣cosθ
→OB.→OA=∣∣→OB∣∣.∣∣→OA∣∣cos2C
→OC.→OA=∣∣→OC∣∣.∣∣→OA∣∣cos2B
Hence, →v.→OA=r2sin2A+r2cos2Csin2B+r2cos2Bsin2C
=r2[sin2A+(cos2Csin2B+cos2Bsin2C)]
=r2[sin2A+sin(2B+2C)]
=r2[sin2A+sin((2π−2A))] since sum of all angles of triangle=π
=r2[sin2A−sin2A] since sin(2π−θ)=−sinθ
=r2×0=0
∴→v.→OA=0
Taking dot product in eqn(1) with →OB on both sides:
→v.→OB=→OA.→OBsin(2A)+→OB.→OBsin(2B)+→OC.→OBsin(2C)
As →P.→Q=∣∣→P∣∣.∣∣→Q∣∣cosθ
⇒→OA.→OB=∣∣→OA∣∣.∣∣→OB∣∣cos2C
⇒→OC.→OB=∣∣→OC∣∣.∣∣→OB∣∣cos2A
Hence, →v.→OA=r2cos2Csin2A+r2sin2B+r2cos2Asin2C
=r2[sin2A+(cos2Csin2B+cos2Asin2C)]
=r2[sin2B+sin(2A+2C)]
=r2[sin2B+sin((2π−2B))] since sum of all angles of triangle=π
=r2[sin2B−sin2B] since sin(2π−θ)=−sinθ
=r2×0=0
∴→v.→OB=0
Taking dot product in eqn(1) with →OC on both sides:
→v.→OC=→OA.→OCsin(2A)+→OB.→OCsin(2B)+→OC.→OCsin(2C)
As →P.→Q=∣∣→P∣∣.∣∣→Q∣∣cosθ
⇒→OA.→OC=∣∣→OA∣∣.∣∣→OC∣∣cos2B
⇒→OB.→OC=∣∣→OB∣∣.∣∣→OC∣∣cos2A
Hence, →v.→OC=r2cos2Bsin2A+r2cos2Asin2B+r2sin2C
=r2[sin2C+(cos2Bsin2A+cos2Asin2B)]
=r2[sin2C+sin(2A+2B)]
=r2[sin2C+sin((2π−2C))] since sum of all angles of triangle=π
=r2[sin2C−sin2C] since sin(2π−θ)=−sinθ
=r2×0=0
∴→v.→OC=0
Hence,→v.→OA=→v.→OB=→v.→OC=0
If →v≠0, then →v must be perpendicular to →OA,→OB and →OC which is impossible.
Hence →v=0,
⇒→OAsin(2A)+→OBsin(2B)+→OCsin(2C)=→0