The correct option is B 2
Let a and d be the first term and common difference, respectively.
Given, T2=13⇒a+d=13 .... (i)
According to the question, we have
(a1+a2+....+a10)=12(a11+a12+...+a20)
⇒2(a1+a2+....+a10)=a11+a12+...+a20
⇒3(a1+a2+....+a10)=(a1+a2+...+a20)
(add a1+a2+...+a10 on both sides)
⇒3×102[2a+9d]=202[2a+19d]
⇒6a+27d=4a+38d
⇒2a=11d .... (ii)
From Eqs. (i) and (ii), we get
11d2+d=13⇒13d2=13⇒d=2.