(cosα+cosβ)2+(sinα+sinβ)2=?
4cos2(α–β)2
4sin2(α–β)2
4cos2(α+β)2
4sin2(α+β)2
Explanation for the correct option:
Solve the expression (cosα+cosβ)2+(sinα+sinβ)2
=cos2α+cos2β+2cosαcosβ+sin2α+sin2β+2sinαsinβ
=(cos2α+sin2α)+(cos2β+cos2β)+2(cosαcosβ+sinαsinβ)
=1+1+2cos(α–β) ; ∵sin2θ+cos2θ=1
=2+2cos(α–β)
=2[1+cos(α–β)]
=22cos2(α–β)2 ; ∵1+cosA=2cos2(A2)
=4cos2(α–β)2
Hence, Option ‘A’ is Correct.