2
You visited us
2
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Sum of Trigonometric Ratios in Terms of Their Product
cosθ + cos2θ ...
Question
cos
θ
+
cos
2
θ
+
cos
3
θ
+
…
.
+
cos
{
(
n
−
1
)
θ
}
+
cos
n
θ
is equal to
A
sin
(
θ
2
)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
cos
(
n
+
1
)
θ
sin
(
θ
2
)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
cos
(
θ
+
(
n
−
1
)
θ
2
)
sin
(
n
θ
2
)
sin
θ
2
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
sin
(
n
θ
2
)
.
cos
{
(
n
+
1
)
θ
}
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is
C
cos
(
θ
+
(
n
−
1
)
θ
2
)
sin
(
n
θ
2
)
sin
θ
2
⇒
Using
cos
x
+
cos
(
x
+
y
)
+
cos
(
x
+
2
y
)
+
.
.
.
+
cos
(
x
+
(
n
−
1
)
y
)
=
sin
n
y
2
sin
y
2
cos
(
x
+
(
n
−
1
2
)
y
)
We get
⇒
cos
θ
+
cos
2
θ
+
cos
3
θ
+
.
.
.
+
cos
n
θ
=
cos
(
θ
)
+
cos
(
θ
+
θ
)
+
cos
(
θ
+
2
θ
)
+
.
.
.
+
cos
(
θ
+
(
n
−
1
)
θ
)
=
sin
n
θ
2
sin
θ
2
cos
(
θ
+
(
n
−
1
2
)
θ
)
Suggest Corrections
0
Similar questions
Q.
Prove by PMI:
c
o
s
θ
+
c
o
s
2
θ
+
.
.
.
.
.
+
c
o
s
n
θ
=
s
i
n
n
θ
2
.
c
o
s
θ
c
θ
2
.
c
o
s
(
n
+
1
)
θ
2
Q.
Find the sum of
1
+
|
cos
θ
|
+
cos
2
θ
+
|
cos
3
θ
|
+
.
.
.
.
c
o
s
(
n
−
1
)
θ
Q.
Prove that :
s
i
n
Θ
+
s
i
n
2
Θ
+
s
i
n
3
Θ
+
.
.
.
.
+
s
i
n
n
Θ
=
sin
(
n
+
1
)
θ
2
sin
n
θ
2
sin
θ
2
Q.
Prove the following trigonometric identities.
(i)
sec
θ
-
1
sec
θ
+
1
+
sec
θ
+
1
sec
θ
-
1
=
2
cosec
θ
(ii)
1
+
sin
θ
1
-
sin
θ
+
1
-
sin
θ
1
+
sin
θ
=
2
sec
θ
(iii)
1
+
cos
θ
1
-
cos
θ
+
1
-
cos
θ
1
+
cos
θ
=
2
cosec
θ
(iv)
sec
θ
-
1
sec
θ
+
1
=
sin
θ
1
+
cos
θ
2
(v)
sin
θ
+
1
-
cos
θ
cos
θ
-
1
+
sin
θ
=
1
+
sin
θ
cos
θ