True
Given that, y=ex(Acosx+Bsinx)
On differentiating w.r.t. x, we get
dydx=ex(−Asinx+Bcosx)+ex(Acosx+Bsinx)⇒dydx−y=ex(−Asinx+Bcosx)
Again differentiating w.r.t. x, we get
d2ydx2−dydx=ex(−Acosx−Bsinx)+ex(−Asinx+Bcosx)⇒d2ydx2−dydx+y=dydx−y⇒d2ydx2−2dydx+2y=0