Differentiate the following questions w.r.t. x.
√e√x
Let y =√e√x
Fifferentiate both sides w.r.t. x,
⇒ dydx=12(e√x)12−1ddxe√x⇒ dydx=12(e√x)12.e√x.ddx(√x)⇒ dydx=12e√x√e√x×12√x=e√x4√x√e√x=e√x4√xe√x
ex3
exsin x
esin−1x.
ex+ex2+.......+ex5
cos(log x+ex).