Differentiate the given functions w.r.t. x.
(sin x)x+sin−1√x.
y = (sin x)x+sin−1√x
Let u=(sin x)x, v=sin−1√x
∴ y = u + v
Differentiating w.r.t., x
⇒ dydx=dudx+dvdx
Now, u=(sin x)x
Taking log on both sides, log u=log (sin x)x ⇒ log u=x log (sin x)
Differentiating w.r.t., x, we get
1ududx=xddxlog(sin x)+log(sin x)ddx(x) (Using product rule) =xsin xcos x+log (sin x)dudx=u[x cot x+log sin x]=(sin x)x[x cot x+log sin x]Again, v=sin−1√xDifferentiating w.r.t x, we getNow, v=sin−1√xdvdx=1√1−(√x)2 ddx x1/2=1√1−x 12 x−1/2 (Using chain rule)⇒ dvdx=1√1−x×12√x ⇒ 12√x√1−x ⇒ dvdx=12√x−x2Putting the values of dudx and dvdx in Eq. (i), we getdydx=(sin x)x[x cot x+log sin x]+12√x−x2