wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Differentiate
xxcosx+x2+1x21 w.r.t.x.

Open in App
Solution

Let y=xxcosx+x2+1x21
y=u+v
u=xxcosx
logu=xcosxlogx
1ududx=xcosxddx(logx)+xlogxddx(cosx)+cosxlogxddx(x)
=xcosx×1xxlogxsinx+cosxlogx
1ududx=cosxxlogxsinx+cosxlogx
dudx=u(cosxxlogxsinx+cosxlogx)
dudx=xxcosx(cosxxlogxsinx+cosxlogx)
v=x2+1x21
dvdx=(x21)ddx(x2+1)(x2+1)ddx(x21)(x21)2
dvdx=(x21)(2x)(x2+1)(2x)(x21)2
dvdx=2x(x21x21)(x21)2
dvdx=4x(x21)2
dydx=dudx+dvdx
=xxcosx(cosxxlogxsinx+cosxlogx)4x(x21)2


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Implicit Differentiation
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon