1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Higher Order Derivatives
∫2.13.5[x]dx=
Question
∫
3.5
2.1
[
x
]
d
x
=
A
1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
3.4
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
3.3
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct option is
A
3.3
∫
3.5
2.1
[
x
]
d
x
∫
3
2.1
[
x
]
d
x
+
∫
3.5
3
[
x
]
d
x
=
∫
3
2.1
2
d
x
+
∫
3.5
3
3
d
x
=
2
[
3
−
(
2.1
)
]
+
3
[
0.5
]
=
2
(
0.9
)
+
1.5
=
1.8
+
1.5
=
3.3
Suggest Corrections
0
Similar questions
Q.
Assertion :
∫
[
x
]
0
5
x
−
[
x
]
d
x
=
4
[
x
]
log
5
Reason:
∫
[
x
]
0
a
x
−
[
x
]
d
x
=
[
x
]
∫
1
0
a
x
−
[
x
]
d
x
Q.
For each of the differential equations, find the general solution:
1.
d
y
d
x
+
2
y
=
sin
x
2.
d
y
d
x
+
3
y
=
e
−
2
x
3.
d
y
d
x
+
y
x
=
x
2
4.
d
y
d
x
+
(
sec
x
)
y
=
tan
x
...
(
0
≤
x
<
π
2
)
5.
cos
2
x
d
y
d
x
+
y
=
tan
x
...
(
0
≤
x
<
π
2
)
6.
x
d
y
d
x
+
2
y
=
x
2
log
x
7.
x
log
x
d
y
d
x
+
y
=
2
x
log
x
8.
(
1
+
x
2
)
d
y
+
2
x
y
d
x
=
cot
x
d
x
...
(
x
≠
0
)
9.
x
d
y
d
x
+
y
−
x
+
x
y
cot
x
=
0
...
(
x
≠
0
)
10.
(
x
+
y
)
d
x
d
y
=
1
11.
y
d
x
+
(
x
−
y
2
)
d
y
=
0
12.
(
x
+
3
y
2
)
d
y
d
x
=
y
...
(
y
>
0
)
Q.
∫
b
+
c
a
+
c
f
(
x
)
dx
is equal to