The correct option is A 15log|tanθ−22tanθ+1|+c
Given, ∫dθ(sinθ−2cosθ)(2sinθ+cosθ)
Dividing numerator and denominator by cos2θ we have;
⇒ ∫sec2θdθ(tanθ−2)(2tanθ+1)
Breaking it in partial fraction form we have:
⇒ ∫[15(sec2θtanθ−2)−25(sec2θ2tanθ+1)]dθ
⇒ 15log(tanθ−2)−25×2log(2tanθ+1)+c
⇒ 15log(tanθ−2)(2tanθ+1)+c
Hence, option 'A' is correct.