1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Algebra of Derivatives
∫2x.cosec2xdx...
Question
∫
sec
2
x
.
cosec
2
x
d
x
=
A
tan
x
−
cot
x
+
c
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
tan
x
+
cot
x
+
c
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
−
tan
x
+
cot
x
+
c
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
sec
x
tan
x
+
c
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is
D
tan
x
−
cot
x
+
c
∫
sec
2
x
.
cosec
2
x
d
x
=
∫
1
cos
2
x
.
sin
2
x
d
x
=
∫
cos
2
x
+
sin
2
x
cos
2
x
.
sin
2
x
d
x
=
∫
cos
2
x
cos
2
x
sin
2
x
+
sin
2
x
cos
2
x
.
sin
2
x
d
x
=
∫
1
sin
2
x
+
1
cos
2
x
d
x
=
∫
(
cosec
2
x
+
sec
2
x
)
d
x
=
−
cot
x
+
tan
x
+
c
=
tan
x
−
cot
x
+
c
Suggest Corrections
0
Similar questions
Q.
∫
(
x
s
e
c
2
x
+
t
a
n
x
)
(
x
t
a
n
x
+
1
)
d
x
=
−
x
x
t
a
n
x
+
1
f
(
x
)
+
c
then f(x)=
Q.
If
∫
e
sec
x
(
sec
x
tan
x
f
(
x
)
+
(
sec
x
tan
x
+
sec
2
x
)
)
d
x
=
e
sec
x
f
(
x
)
+
C
, then a possible choice of
f
(
x
)
is :
Q.
is equal to
A. tan
x
+ cot
x
+ C
B. tan
x
+ cosec
x
+ C
C. − tan
x
+ cot
x
+ C
D. tan
x
+ sec
x
+ C