Evaluate the following one sided limits:
(i)limx→2+x−3x2−4
(ii)limx→2−x−3x2−4
(iii)limx→0+13x
(iv)limx→8+2xx+8
(v)limx→0+2x15
(vi)limx→π−2tan x
(vii)limx→π2+sec x
(viii)limx→0−x2−3x+2x3−2x2
(ix)limx→−2+x2−12x+4
(x)limx→0+(2−cot x)
(xi)limx→0−1+cosecx
You are given cosx=1−x22!+x44!−x66!......; sinx=x−x33!+x55!−x77!......; tanx=x+x33+2x515...... Then the value of limx→0xcosx+sinxx2+tanx is