The correct option is
B (n+1)(2n+1)
2n+1∑k=1(−1)k−1.k212−22+32−42+.....(2n+1)2
={12+32+52+....(2n+1)}2−(22+42+62+...(2n)2)+(22+42+62+...(2n)2)−(22+42+62.....(2n)2)
=12+22+32+...(2n+1)2−2[22+42+62....(2n)2]
=2(2n+1)(n+1)(4n+3)6−8×n(n+1)(2n+1)6
=2(n+1)(2n+1)6[4n+3−4n]
=(n+1)(2n+1)