The correct option is B ∞
Use the identity a2−b2=(a+b)(a−b)
thus
limn→∞(1−122)(1−132)(1−142).⋅.⋅⋅(1−1n2)(1−12)(1−13)(1−14).(1−1n)
=limn→∞(1−12)(1+12)1−(12)(1−13)(1+13)1−(13)(1−13)(1+14)1−(14)....(1−1n)(1+1n)1−(1n)
=limn→∞(1+12)(1+13)(1+14)...(1+1n)
=limn→∞324354....n+1n
=limn→∞n+12
Thus limn→∞n+12 also tends to infinity