The correct options are
A a=b=c B a+b+c=0The given equations are in the form
ax+by+c=0 and
px+qy+r=0 who represent the same line.
So, ap=bq=cr=k when, k is a constant.
Here a=b3−c3,b=c3−a3,c=a3−b3 and p=b−c,q=c−a,r=a−b
∴b3−c3b−c=k
⇒(b−c)(b2+c2+bc)=(b−c)k
⇒(b−c)(b2+c2+bc−k)=0
∴ either b−c=0
⇒b=c .......(i)
or (b2+c2+bc−k)=0
⇒b2+c2+bc=k ............(1)
Similarly c=a........(ii) and
c2+a2+ca=k ............(2)
Also a=b .......(iii) and
a2+b2+ab=k ............(3)
∴ from (i), (ii) and (iii), we have
a=b=c first condition
Again from (1) and (2), we have
b2+c2+bc=c2+a2+ca
⇒b2−a2=c(a−b)
⇒(b−a)(b+a)=c(a−b)
⇒b+a=−c
⇒a+b+c=0 second condition, we shall get the same considering (2) and (3).