The correct option is C 3
Given, (a−b)2(b−c)(c−a)+(b−c)2(a−b)(c−a)+(c−a)2(a−b)(b−c)
=(a−b)3+(b−c)3+(c−a)3(a−b)(b−c)(c−a)
=(a3−b3+3b2a−3a2b)+(b3−c3−3b2c+3c2b)+(c3−a3−3c2a+3a2c)(a−b)(b−c)(c−a)
=3b2a−3a2b+3c2b−3b2c+3a2c−3c2a(a−b)(b−c)(c−a)
=3(b2a−a2b+c2b−b2c+a2c−c2a)(a−b)(b−c)(c−a)
=3(a−b)(b−c)(c−a)(a−b)(b−c)(c−a)
=3
Option D is correct.